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A heuristic based on vertex invariants is developed to rapidly distinguish nonisomorphic graphs to a desired
level of accuracy. The method is applied to sample subgraphs from an Escherichia coli protein interaction
network, and as a probe for discovery of extended motifs. The network’s structure is described using statistical
properties of its N-node subgraphs for N�14. The Zipf plots for subgraph occurrences are robust power laws
that do not change when rewiring the network while fixing the degree sequence—although many specific
subgraphs exchange rank. The exponent for the Zipf law depends on N. Studying larger subgraphs highlights
some striking patterns for various N. Motifs, or connected pieces that are overabundant in the ensemble of
subgraphs, have more edges, for a given number of nodes, than antimotifs and generally display a bipartite
structure or tend toward a complete graph. In contrast, antimotifs, which are underabundant connected pieces,
are mostly trees or contain at most a single, small loop.
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I. INTRODUCTION

The recent surge of interest in complex networks has of-
ten targeted general features of organization �1–10�. A num-
ber of common properties have been observed, including the
so-called small-world effect, fat tails in the distribution of the
node degree �the “scale-free” network�, as well as clustering.
Although the last two attributes are statistical properties of
the local network structure, networks that share these fea-
tures may nonetheless exhibit totally different specific local
structures. Certain connected subgraphs with three or four
nodes, termed “motifs” �11–13�, turn out to be significantly
overabundant in real networks when compared to null mod-
els. These null models are typically randomized networks
where the smaller-scale structure �e.g., node degree� �14� is
determined by the original network. It is believed that net-
works with similar functions—for example, logic chips and
neural networks—display the same motifs �11�. A growing
body of evidence indicates that particular motifs perform
specific functions in gene transcription networks �12,15–22�.
In addition, proteins within motifs are more conserved across
species than proteins that do not form part of such units
�23,24�.

Motifs and antimotifs, which are significantly underabun-
dant connected subgraphs, may also be useful in classifying
networks and comparing real-life situations to theoretical
models. Milo et al. �25� explored significance profiles: nor-
malized Z scores for particular connected subgraphs. They
claim to find “superfamilies” of networks displaying similar
profiles. In a similar vein, Middendorf et al. �26� used ex-
haustive subgraph enumeration of networks generated by dif-
ferent theoretical models as training data for a machine
learning algorithm, and developed a discriminative classifier
subsequently able to identify new networks with success.

However, all of these approaches have been handicapped
by the small size of connected subgraphs. This limits the
scale where features of organization in networks can be dis-
covered. In most cases, connected subgraphs with at most
four nodes are considered. Middendorf et al. �26� searched

for two different categories of subgraphs: graphs that could
be generated by a random walk of length less than or equal
to eight, and graphs with up to seven links—to achieve
slightly larger subgraphs. Ziv et al. �27� analyzed statistically
significant measures that can be calculated directly from the
adjacency matrix �28�. These measures are related to sub-
graphs but lack a one-to-one correspondence. Hence the pos-
sibility of insight into the function of organized structure at
different scales or the systematic discovery of larger-scale
structures is—from our point of view—lost.

The existing size limitation for motif discovery leaves
some interesting questions unanswered. Do motifs appear in-
dependently, or do they combine to form larger organized
structures �27,29,30� that are overwhelmingly represented in
the real network compared to an appropriate null model? If
so, what do these extended structures look like? What prop-
erties of the network’s ensemble of N-node subgraphs distin-
guish it from null models or from other networks? Are col-
lections of nodes that participate in motifs of larger sizes also
more likely to be related to function and/or conserved
through evolutionary history? Kashtan et al. made some
progress in this direction by considering specific generaliza-
tions of three- and four-node motifs �31�. They found that
networks sharing a particular three-node motif favored dif-
ferent generalizations of that motif, suggesting that larger
structures need to be considered to fully understand how the
network is organized. However, this work relied on a priori
assumptions about possible generalizations to larger motifs.
Searches were tailored to particular subgraphs. A more gen-
eral analysis is known to be computationally difficult
�32–35�.

A. Problems in finding extended structures

There are at least three main problems. The first is that the
time required for exhaustive enumeration of subgraphs in-
creases rapidly with subgraph size, particularly for large net-
works. This can be solved by sampling: Kashtan et al. �34�
showed that quite small samples could be sufficient to iden-
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tify motifs with up to seven nodes. However, their method
requires the calculation of weights in order to achieve uni-
form sampling. Their calculation of these weights increases
in difficulty, with combinatorial factors, as the connected
subgraph size increases. We achieve uniform sampling auto-
matically by picking nodes at random from the network—at
the expense of sampling both connected and disconnected
subgraphs.

The second problem is to determine appropriate null mod-
el�s� and significance. The standard null model �see, for in-
stance, Ref. �14�� is where the degree of every node is not
allowed to change—so the single-node properties are fixed.
Such an ensemble can be obtained using a sequential Monte
Carlo method called “rewiring.” Statistically significant de-
viations from that background are by definition coming from
node-node correlations. Extending this argument, when Milo
et al. �11� search for four-node motifs they also fix the actual
number of each kind of three-node subgraph in their null
model. However, as in Ref. �31�, here we use only the en-
semble of fixed degree sequence as a null model to test for
significance. Explicitly fixing the occurrence of �N−1�-node
subgraphs is computationally intractable for larger N. There
are not only linear constraints between different subgraphs
arising from conservation laws �see Ref. �25� and Sec. IV C�
associated with rewiring but also nonlinear correlations
caused, in part, by the form of the null model.

The third difficulty lies in distinguishing nonisomorphic
subgraphs. This is the well-known and notoriously difficult
“graph isomorphism problem” �36,37�. The number of pos-
sible graphs grows faster than exponentially with N �35�.
Several algorithms �38–42� are available, but most of these
are configured to make a comparison for isomorphism be-
tween two graphs. Comparing each new subgraph pairwise
to all subgraphs already identified would be far too time
consuming in this context. Some existing programs can be
altered to provide sets of labels to identify particular graphs.
They tend to be optimized for large graphs �hundreds of
nodes�, and appear to us to be unsuitable for the type of
search required for discovery of organization at larger scales
than three or four nodes.

At this point in time, discovery of larger-scale organiza-
tion does not require particularly large subgraphs. Ten to
fifteen nodes would already be a significant step forward,
and entails a new set of problems and types of behaviors as
discussed later. Subgraphs do, however, need to be classified
quickly if a method is to be practical. We present a heuristic
that assigns a set of labels to each subgraph as it is sampled,
so that isomorphic graphs are guaranteed to have the same
label�s�, but �most� nonisomorphic graphs have different la-
bels. The accuracy of the method depends on the number of
labels used—at the expense of increased computational ef-
fort. We test the heuristic by comparing with exact enumera-
tion of all non-isomorphic graphs up to N=8. Combined with
a sampling technique, our heuristic is used to identify ex-
tended motifs of a protein interaction network. We sample
both connected and disconnected subgraphs uniformly by
picking N distinct nodes at random. Motifs are then discov-
ered by looking at the significance—with some caveats—of
individual subgraphs that contain these structures as distinct
pieces.

B. Summary

The labeling algorithm is described in Sec. II. In Sec. III
various stages of the algorithm are tested. The full algorithm
successfully distinguishes all graphs with up to eight nodes
�43�. Differences in the running times and accuracy of the
stages are also discussed. In Sec. IV, the algorithm is used to
identify extended motifs and antimotifs in the Escherichia
coli protein interaction network. The motifs all share a re-
markably similar bipartite structure, which is completely dif-
ferent from the long chains and tails seen in antimotifs. For
fixed N the distribution of all subgraph counts is found to
obey a power law, where the exponent depends on N. The
Zipf plots �log occurrence vs log rank� of the real and ran-
domized networks are quite similar although the subgraphs
exchange rank. In Sec. V we conclude with a summary.

II. THE LABELING ALGORITHM

The algorithm developed here can be applied to both
simple graphs and digraphs—graphs with directed edges.
Here we will concentrate on the algorithm for simple graphs,
leaving the straightforward generalization to digraphs to a
later presentation.

Motif discovery requires a fast way to identify graphs that
are isomorphic. One way to be certain that two graphs are
isomorphic is to find the isomorphism that maps one to the
other. This is a permutation of the vertex labels of one graph
such that its list of links becomes identical to that of the
other graph. To show that two graphs are not isomorphic
therefore requires proving that no such isomorphism exists,
which in theory requires checking every possible permuta-
tion of the vertices. Since there are N! such permutations for
a graph with N nodes, this is far too time consuming to be
practical. Many algorithms therefore start by trying to reduce
the number of permutations that need to be checked, usually
by applying some kind of “canonical labeling” �2� or order-
ing to the vertices. For example, if a unique way of ordering
the vertices in both graphs can be found, then vertices of the
same rank must map to each other—in order for the graphs
to be isomorphic.

An alternative approach is to try to find an invariant under
permutation, or set of invariants, that uniquely labels any
graph. The use of invariants ensures that isomorphic graphs
always receive identical labels. However, it is not certain that
nonisomorphic graphs will receive at least one different la-
bel. Remie �44� defines four different invariants, but none of
these can distinguish the eight-node graphs in Fig. 1 as
nonisomorphic.

A. Invariant vertex labels

Our approach defines vertex invariants through a gener-
alization of standard canonical labeling �2�. Usually, the ca-
nonical label depends only on the degrees of the vertex being
labeled together with its immediate neighbors. This means,
for example, that all vertices in a long chain �except the two
end points� receive the same label, whereas it is clear that
nodes near the end of the chain should be distinguishable
from nodes nearer the middle. Bearing this in mind, we have
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extended the usual canonical labeling to include all vertices
in the graph. In the case of a graph made of disconnected
pieces, we include all vertices in the connected piece con-
taining the vertex being labeled.

As with the usual canonical labeling, our label is a sum of
powers of two, with the vertex degrees kj determining the
power. To include all vertices, but give a higher weight to
those closest to the vertex Vi being labeled, we include an
additional factor of 2x−xij, where x is the diameter. This di-
ameter is the maximum shortest path between any two ver-
tices on the connected piece of the subgraph containing Vi.
The quantity xij is the distance between vertices Vi and Vj,
where Vj is required to be connected to Vi by some path. The
lowest possible weighting is 20=1 �if xij =x�, and the highest
weighting �2x� is given to Vi itself. Each vertex Vi is assigned
a label Xi as follows:

Xi = �
j

connected

2x−xij+kj , �1�

where kj is the degree of vertex Vj �45�. The sum is taken
over all vertices in the graph, or if the graph contains several
disjoint subgraphs, over all vertices in the connected sub-
graph containing Vi.

The labels defined by Eq. �1� have an intuitive meaning.
More connected or central vertices have higher values. Fig-
ure 2 gives some examples of the labelling scheme for dif-
ferent subgraphs. The labels Xi are clearly higher for more
central vertices than those closer to the edge.

B. Invariant graph labels

The set of vertex labels could be used directly to distin-
guish graphs, but they would need to be ordered, for instance
in descending order, before comparisons between graphs
could be made. Another approach is to combine the vertex
labels to obtain a small set of graph labels. One candidate
graph label is the sum l1�= ��iXi�. Unfortunately it does not
produce unique labels. Figure 3 shows two graphs that have
the same sum despite having different vertex labels �and
hence being clearly nonisomorphic�. However, the product
does not suffer from this defect. In theory it could, but in
practice we have not found it to be the case for the graphs

studied. Our first graph label is therefore defined to be

l1 = �
i

Xi. �2�

Note that this product is over all the vertices in the graph,
whether it is connected or made of disjoint pieces. Should
this product become too large to be conveniently stored as an
integer, the first several �e.g., nine� digits can be used in-
stead, without causing any degeneracy in labels. Again, this
is an empirical observation rather than a mathematical cer-
tainty. However, this is not the end of the story.

We found that l1 successfully distinguishes all graphs with
up to five nodes, but there are two pairs of nonisomorphic
graphs with six nodes that are assigned identical values. The
graphs in Fig. 1 provide another problematic example. These
graphs are highly symmetric. In both graphs, every vertex
has degree five—with the remaining nodes at distance xj =2.

FIG. 1. Two nonisomorphic graphs that cannot be distinguished
by any of the invariants proposed by Remie.

FIG. 2. Vertex labels calculated using Eq. �1�. Higher values are
assigned to more central vertices, or those with higher degrees.

FIG. 3. These two graphs have different vertex labels Xi, which
nonetheless combine to give the same sum: l1�=68+68+56+52
+52=64+64+56+56+56=296. Their graph labels l1, however, are
not equal.
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Hence all the labels Xi=22�25+5�21�25+2�20�25

=576 are identical.
If all vertices are equally “connected,” but the two graphs

are not isomorphic, what is the difference between them?
Taking their complements �exchanging links and nonlinks
for every vertex pair� as shown in Fig. 4 reveals the source.
While the complement of graph �a� is a single loop with
eight links, which we shall now refer to as an eight-loop, that
of graph �b� consists instead of two four-loops. Applying our
labeling method to these complements produces unique la-
bels, which suggests a possible solution to the problem. For
all graphs, first calculate l1 as described above. Then take the
complement of each disconnected subgraph of the graph. Re-
calculate labels Yi for this new graph, and combine these
labels into the product

l2 = �
i

Yi, �3�

where the product is again taken over all vertices in the
graph. Each graph is then labeled by the vector �l1 , l2 ,L ,N�,
where L is the total number of links in the graph. Note that
for disjoint graphs, it is extremely important to take the
complement of each connected subgraph individually; if the
complement of the whole graph is taken instead, small dis-
connected pieces can cause problems, so that degeneracy in
labeling appears for quite small graphs. An algorithm with
these graph labels was tested by applying it to every possible
labeled graph for N�8 and measuring the number of distinct
sets of labels. This number was compared to the true number
of nonisomorphic graphs. Those were determined using
Polya’s enumeration theorem. The algorithm uniquely la-
beled every graph with up to six nodes �N=6� and distin-
guished 1038 out of 1044 for N=7 and 12 078 out of 12 346
for N=8. Even for N=8 almost 98% of distinct graphs were
uniquely labeled.

What further invariant properties can be used as labels?
Again, considering the complements in Fig. 4 provides a
clue—their different loop structures. In fact the numbers of
all loops except three-loops are different for the two graphs
in Fig. 1. We counted all the loops in a graph by searching
through its adjacency matrix. The number of three-loops
�n3�, four-loops �n4�, etc. can then be incorporated as extra

labels, so that each graph is labeled by the vector
�l1 , l2 ,L ,n3 ,n4 , . . . ,nN�. This adapted algorithm, when tested,
correctly distinguished all graphs with up to N=8 nodes.
Exhaustive testing of graphs with more nodes is not worth-
while at present, as the program for N=9 would run for more
than a year on a present day standard laptop.

III. TESTING THE ALGORITHM

This section may be skipped by those primarily interested
in motif discovery. As stated in Sec. II, all stages of the
algorithm have been tested exhaustively for graphs with up
to eight nodes. A simple graph with N nodes contains Lmax

= � N
2

�=N�N−1� /2 vertex pairs. Thus Lmax is the maximum
possible number of links, and 2Lmax is the number of labeled
graphs. An easy way to generate all labeled graphs is to cycle
through the binary numbers between 0 and 2Lmax−1, loading
their digits in order into the off-diagonal elements of an ad-
jacency matrix. The labeling algorithm can then be succes-
sively applied to each matrix or graph. The accuracy of the
algorithm can be evaluated by comparing the number of
graphs correctly distinguished to the true number of noniso-
morphic graphs, as determined by Polya’s enumeration theo-
rem. The results for different stages of the algorithm are
shown in Table I. Note that, since the labels are invariants,
isomorphic graphs must be assigned the same set of labels.
Thus it is not possible to overcount the number of distinct
graphs. Undercounting is possible, however, since noniso-
morphic graphs may nonetheless have similar enough struc-
tures to produce degenerate labels.

Table I shows that incorporating loop counting together
with l1 and l2 is the most accurate method. However, the cost
in computing time is significant. On a standard laptop, for
N=8 it took 4.5 h to compute l1 alone, 6 h to compute l1 and
l2, and 26 h for the full algorithm including loop counting.
Using l1 and l2 without loop counting works perfectly up to
N=6, but then misses six graphs �0.6%� at N=7 and 268
graphs �2.2%� at N=8. The graphs shown in Fig. 5 are typi-
cal examples of pairs not distinguished by either l1 or l2. One

FIG. 4. These two graphs are the complements of the graphs
shown in Fig. 1.

TABLE I. Number of graphs distinguished by different graph
labels compared to the exact number of graphs calculated using
Polya’s enumeration theorem, shown in the second column. The
third column shows the result obtained by using the sum l1� rather
than a product l1 of the vertex labels. In the remaining columns l1

and l2 are as defined in Eqs. �2� and �3�. The last column includes
the number of loops as graph labels.

Number of Graphs

N Exact l1� �sum� l1 l1, l2 l1, l2 loops

2 2 2 2 2 2

3 4 4 4 4 4

4 11 11 11 11 11

5 34 33 34 34 34

6 156 136 154 156 156

7 1044 693 1004 1038 1044

8 12346 4381 11188 12078 12346
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graph can be mapped to the other by switching the end points
or “rewiring” two links. The complements of the graphs
share the same property; hence the degeneracy in l2 as well
as l1.

Another possible route might be to omit l2 when loop
counting is included. Using l1 plus loop counting works per-
fectly up to N=7, but fails to distinguish two pairs of graphs
at N=8 �see Fig. 6�. The danger, as with omitting loop count-
ing, is that once an algorithm misses even a small percentage
of graphs for some N, it misses more and more as N in-
creases.

To summarize, the combination of l1, l2, and loop enu-
meration differentiates all nonisomorphic graphs with up to
eight nodes. However, loop counting is very time consuming,
and omitting it only causes around 2% of the N=8 graphs to
be degenerately labeled. With the above mentioned caveats
we proceed with a subgraph census obtained by sampling a
protein interaction network using the algorithm with l1 and
l2, but without loops.

IV. ENSEMBLES OF SUBGRAPHS AND MOTIF
DETECTION IN A PROTEIN INTERACTION NETWORK

We now present results for the statistics of subgraphs in
the protein interaction network of E. coli �46�. The histogram
of all nonisomorphic subgraphs in the network is a charac-
terization of that network. This is termed a “subgraph cen-
sus” �47�. The ensemble of subgraphs is obtained by uniform
sampling rather than exact enumeration. This should give an
accurate picture of the true census up to statistical fluctua-
tions and an overall normalization. Uniform sampling of
connected and disconnected N-node subgraphs is achieved

by picking N nodes at random. Results were compared with
exact enumeration for small N. Since there is no inherent
directionality in the interactions themselves, we have chosen
to treat the network as undirected. The network has 270
nodes and 716 links; however it is not fully connected: 17
pairs of nodes connect only to each other, and there are two
isolated triplets. The largest connected component consists of
230 nodes and 695 links. Both this piece, termed the giant
component �GC�, and the entire network are studied.

A. Zipf’s law for subgraph census

We first consider subgraphs with a fixed number of nodes
and ask what is the frequency of occurrence of different sub-
graphs. For each N�5 a sample of 108 subgraphs were ob-
tained. The ensembles for N=3 and 4 do not have enough
subgraphs to obtain a smooth distribution. The labels L, l1,
and l2 were used to identify graphs, but loop counting was
not included. The subgraphs were then ranked in descending
order of occurrence, and Zipf plots were made �48�.

The Zipf plots all indicate power-law behavior. Figure 7
shows a typical example. The distribution obtained from the
GC was compared to two different null cases. The first, de-
noted “randomized” in Fig. 7, is a rewired version of the GC
with the degree of each node fixed. This was generated by
repeatedly choosing two links in the network at random and
swapping their end points, until mixing was achieved. As
usual, mixing was evaluated a postiori. Swaps are disal-
lowed if they create self-loops or produce a preexisting link.
The second null model is a random Erdös-Renyi �ER� net-
work with the same link probability as the real network. For
the GC of the E. coli network, this link probability is p
=695/ � 230

2
��0.0264, for the original network p=716/ � 270

2
�

�0.0197. An ensemble of 108 graphs with the desired num-
ber of nodes was generated using a Bernoulli process. In

FIG. 5. The bottom pair of graphs are the complements of the
top pair. Neither pair can be distinguished by l1 or l2. The pairs
exhibit different loop structures and can therefore be differentiated
by loop enumeration.

FIG. 6. The top and bottom pairs have the same vertex labels
and the same loop structure. Both pairs are distinguished by the
labels of their complements. Note that the bottom pair are identical
to the top—save for the addition of one extra link.
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particular, a random number was placed on each pair of dis-
tinct nodes to determine whether or not a link would be
made. This ensemble is denoted “ER” in the Zipf plots. As
demonstrated in Fig. 7, the Zipf plots of the real and random-
ized networks are almost identical, but differ noticeably from
the ER network. This is true for all N, and for both the GC
the entire E. coli network.

Figure 8 shows Zipf plots for the GC with varying sub-
graph sizes. It can be seen that all five sizes are consistent
with power-law behavior, although N=6 is less smooth than
the others because there are fewer subgraphs. The main dif-
ference between the Zipf plots is that as N increases the
gradient becomes shallower. Hence, it appears that the expo-
nent is not universal with respect to N.

Zipf plots for the original network and its GC are also
similar. As Fig. 9 shows, the plots for the real network and
the randomized network with identical degree sequence are

close in both cases. The main difference between the GC and
the entire network is that in the latter case the distribution is
somewhat broader. However, the curves for the ER networks
with corresponding link probabilities show the same ten-
dency, which suggests that the difference in link probability
may be the main factor for this trend.

B. Evidence for motifs

Although the collections of subgraph counts are almost
identical for the real and randomized networks, the rank of
individual subgraphs within each census differs markedly.
The subgraphs of the randomized network were arranged in
the same order as those in the real network to get the scatter
plot shown in Fig. 10. For comparison, the Zipf plot for the
real network is also shown as a connected line. Note that
there is no difference in the rank of specific subgraphs for the
most frequently occurring subgraphs, but deviations appear
for less dominant subgraphs. The vertical difference between
each point and the line indicates the difference in the number
of occurrences of a particular subgraph in the randomized
network as compared to the original one. Note that the rank
of the subgraph in the original network gives a unique tag to
that subgraph. It can clearly be seen that the counts of certain
individual subgraphs vary by orders of magnitude between
the two networks.

These large differences are not just a statistical artifact of
the rewiring process, as can be seen by redoing the analysis
of Fig. 10 for two randomized networks with the same de-
gree sequence as the E. coli network. Instead of comparing
the real E. coli network with a rewired version of itself, we
compare two rewired versions of the E. coli network. Now
the subgraphs are ordered according to their occurrence in
the first rewired network. Comparing Figs. 10 and 11, note
that the scatter of points around the line �particularly below
the line� in the latter case is significantly less than the former.
This suggests the existence of “motifs” �11–13�: particular

FIG. 7. �Color online� Zipf plot for N=9 subgraphs of the giant
component of the E. coli network, for sample size 108. Also shown
are the Zipf plots for the rewired network and for a Bernoulli or
Erdös-Renyi �ER� random graph with the same link probability and
same sample size. Fixing the degree sequence almost exactly fixes
the Zipf plot while the specific subgraphs exchange rank under
rewiring.

FIG. 8. �Color online� Zipf plots obtained from the giant com-
ponent of the E. coli network for subgraphs with varying numbers
of nodes N.

FIG. 9. �Color online� Zipf plots for N=11 subgraphs in differ-
ent networks: �a� real E. coli network, �b� rewired E. coli network,
�c� ER network with same number of nodes and link probability as
�a�, �d� giant component of E. coli network, �e� rewired giant com-
ponent, and �f� ER network with same number of nodes and link
probability as �d�.
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subgraphs that are significantly overabundant in the real net-
work compared to its ensemble of randomized networks.

To explore the issue of motifs further, subgraph counts
from the real network were compared to counts from several
randomized networks. For N=3 and 4, we made an exhaus-
tive enumeration of every subgraph. This was done for the
real network and 100 different randomized networks. The
mean and standard deviation of the randomized counts were
then computed, allowing a Z score to be calculated. The Z
score is the difference in the occurrence of the subgraph in

the actual network compared to the mean in the sample of
rewired networks divided by the standard deviation of the
occurrence of that subgraph in the rewired networks. Figure
12 shows the results for the original network �with Z scores
for the GC in brackets�. The counts in the ER column are
theoretical expectation values for an ER network of the ap-
propriate size and link probability.

C. Linear constraints between subgraphs

For N=3 all the Z scores have the same magnitude. This
is a direct consequence of the strict conservation of the de-

FIG. 11. �Color online� This graph compares two randomized
versions of the E. coli network in exactly the same way that the
network and a randomized version of it were compared in Fig. 10.
The fluctuations, or scatter below and above the line in Fig. 10, are
much larger, indicating a pattern of statistically significant devia-
tions of subgraph occurrences in the original network.

FIG. 10. �Color online� Occurrences of N=14 subgraphs for the
real �red line� and randomized �black points� networks. The sub-
graphs in the randomized network are placed along the x axis in the
same order as those in the real network to allow direct comparison
between counts for each subgraph. Points significantly below the
line represent motifs, while those significantly above represent
antimotifs.

FIG. 12. Results for subgraphs
with N=3 and 4 nodes in the E.
coli protein interaction network.
The third column shows the
counts obtained by exact enu-
meration for the real network,
while columns 4–6 show results
obtained from exact enumeration
of subgraphs in an ensemble of
100 networks with the same de-
gree sequence. Z scores for the gi-
ant component are shown in pa-
rentheses in column 6. The last
column shows theoretical expecta-
tion values for ER random graphs.
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gree sequence in the rewiring procedure �47�. Consider a
particular swap between two links. The only three-node
graphs that can possibly be affected are those that contain at
least one of the newly created or newly deleted links. At least
two of the three nodes must therefore be chosen from among
the four at the ends of the swapped links. The four-node
graph formed by the swapping nodes themselves is always
unchanged by all allowed swaps �recall that it is not permit-
ted to duplicate a preexisting link�. Its three-node subgraphs
are therefore also unaffected. The remaining possibility in-
volves five-node graphs containing one extra node in addi-
tion to the four swapping nodes. This extra node can have
between zero and four links connecting it to the four swap-
ping nodes. It turns out that there are only three pairs of
five-node graphs that can be interchanged by link swapping.
In every case, the count of N=3 graphs with no links de-
creases by one, that of one-link graphs increases by three,
that of two-link graphs decreases by three, and that of three-
link graphs increases by one �up to an overall sign�. This
exact equality produces coincidence of the Z scores.

The only remaining degree of freedom for the deviation
of the actual network from its randomized ensemble is a
single signed number. Its value indicates a significant differ-
ence between the real network and random networks with the
same degree sequence, although it is impossible to ascribe
this significance to any one subgraph in particular. Note that
for the empty three-node graph, its statistical underabun-
dance in the real network is due to the fact that the variance
of this number in the ensemble is tiny, because those changes
are slaved to a variable �the connected triangle� with small
numbers. The actual underabundance of empty three-node
subgraphs is an unimportant fraction of the overall number
of those subgraphs. This illustrates the potential difficulties
with assigning importance to individual subgraphs based on
their individual Z score—when the Z scores of individual
subgraphs must be correlated.

Conservation rules for subgraphs under rewiring was pre-
viously observed by �25� for three-node subgraphs in di-
rected networks, where although there are 13 different con-
nected motifs, only seven degrees of freedom are
independent. For undirected N-node graphs, there are at least
N conservation laws corresponding to moments of �iki

m with
m=0,1 , . . . ,N−1.

D. Motif selection

Ignoring the potential problems associated with attaching
physical importance to specific subgraphs with high indi-
vidual Z scores, we find that for N=4 two graphs stand out as
being particularly over- or underabundant. The square graph
labeled l1=1 679 616 is overrepresented, while the same
graph with one edge missing �l1=6 350 400� is underrepre-
sented. It is also interesting to note that graphs with more
�less� links tend toward over- �under-�abundance. Overall the
Z scores are modestly lowered for the GC, but the same
overall trends emerge in both cases. In particular, the same
two subgraphs are readily identified as motif and antimotif.

For N�5, an exhaustive scan of all subgraphs is time
consuming, so uniform samples of 108 subgraphs were used

instead. Subgraphs do not need to be fully connected in order
to be useful for identifying motifs. As for N=3 and 4, the
real network was compared to an ensemble of randomized
networks with the same degree sequence. Only 20 networks
were included, though, rather than 100. Twenty was chosen
as the smallest number for which standard deviations and Z
scores are reasonably stable. Checks show that when calcu-
lations are repeated, the Z scores obtained vary slightly, but
the same graphs always stand out as motifs.

The main difficulty is that too many subgraphs have high
individual Z scores. This may be related to the correlations
discussed above. Ignoring previously mentioned caveats, we
proceeded by using other selection criteria to choose the
most important. After some experimentation the following
ad hoc rules were used to identify motifs. Two different
samples were taken from the real network, and Z scores were
computed comparing each of these to the same ensemble of
20 randomized networks. A subgraph was identified as either
a motif �if it was connected� or containing a motif �if it was
disconnected� if Z�10 �or Z�−10 for antimotifs� for both
samples. Note that we consider only connected pieces to be
motifs even though the subgraphs from which motifs are
identified may be disconnected. Requiring �Z��10 for two
different samples largely eliminates statistical oddities,
which can otherwise occur for subgraphs with low counts.
The relatively high cutoff in Z also helps ensure statistical
stability, as was also noted in �34�. Even then, the number of
new motifs identified increases dramatically with N. To over-
come this problem, only subgraphs whose Z scores were in
the top 50 for that value of N were considered. Again, this
had to be true for both samples. Motifs identified at a given
N tend to reappear as connected components in disconnected
graphs at higher N—see, for example, the graph labeled
4096�1� for N=3 and 4 in Fig. 12. The last condition was
therefore that a new motif has to replace an old one in the top
50 to make the grade.

Since including extra, unconnected nodes does not change
the label of a graph it is easy to identify and eliminate pre-
vious motifs at each new value of N. Motifs with a given
number of nodes are not always discovered straight away;
for example, an N=6 motif may not meet the condition Z
�10 in the sample of N=6 subgraphs but show up much
more strongly �with one or two disconnected nodes� at N
=7 or 8. This often means that subgraphs that only just fail
the criteria at one N are positively identified at the next. This
trend makes the selection of motifs more robust against small
changes in the rules used to identify motifs. At some point,
however, the number of genuine new motifs found begins to
account for a smaller and smaller proportion of newly iden-
tified subgraphs. We also found that for N�9 a smaller
proportion of sampled subgraphs had �Z��10. Because of
these diminishing returns, the present search was stopped
after N=10.

There are several possible reasons for this loss of effi-
ciency: one is the finite size of the E. coli network, or an-
other property of the network. It is also possible that the
heuristic may be starting to fail, recalling that the most ac-
curate version was not employed because of time constraints.
Wrongly classifying a small percentage of nonisomorphic
graphs as isomorphic is unlikely to make much difference,
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but if the problem worsened, genuine motifs could be
swamped by other subgraphs which are more common in the
randomized networks. This potential difficulty does not cast
doubt on the motifs or antimotifs presented here, as none of
them fall into the categories of graphs that cause problems,
which have been thoroughly investigated for N�8. How-
ever, further investigation might be appropriate before at-
tempting to use this method for much larger subgraphs.

The original network was considered first; then calcula-
tions were repeated on the GC of the network for the first
few N. The same motifs were identified for both networks,
although the order in which they were found varied slightly.
We therefore conclude that the technique is robust.

E. Patterns in motifs

The motifs found are shown in Fig. 13 �overabundant�
and Fig. 14 �underabundant�. Some striking patterns appear.
First, many of the motifs have a bipartite structure where the
vertices can be divided into two sets such that no links exist
within either set, but many links exist between members of
opposite sets. Many graphs display a complete matching:
each vertex is connected to every member of the other set.
Many more graphs have almost complete matchings, missing

just one or two links. Again, some graphs are almost bipar-
tite, with complete or almost complete matchings between
two sets of vertices, and just a few matchings within each
set. Some of these latter graphs may be seen as interpolating
between bipartite graphs and complete graphs, where every
vertex is connected to every other vertex. Complete graphs at
N=4 and 5 are observed as motifs. All motifs have a high
link:node ratio. In fact, L�N for all motifs. Finally, the re-
maining motifs fall into one of the categories described
above, with the addition of one or two “hanging” links.

Antimotifs follow a completely different pattern. They oc-
cur mostly as trees or may contain at most a single loop
�usually a triangle, but there are two pentagons and one
square� with long tails. This is to be contrasted with the
bipartite structures of the overabundant subgraphs, which
typically contain many loops. They also have fewer links
than motifs: either L=N−1 for pure chains or L=N, if there
is one loop�. This difference in the link:node ratios is readily
apparent in Table II. In fact, for a given N no overlap in L
values for motifs and antimotifs exists.

V. SUMMARY

This paper addresses some of the problems associated
with finding extended structures in complex networks. We
propose a heuristic for graph isomorphism and validate its

FIG. 13. Motifs �overabundant subgraphs� of the E. coli protein
interaction network.

FIG. 14. Antimotifs �underabundant subgraphs� of the E. coli
protein interaction network.
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accuracy for classifying all undirected subgraphs with N up
to 8. A version of the algorithm is used, together with uni-
form sampling, to obtain statistical signatures of the en-
semble of N-node subgraphs in an E. coli protein interaction
network for subgraphs with N up to 14. The distribution of
subgraph occurrences follows a power law and the Zipf plots

do not change significantly under rewiring. Sampling all pos-
sible subgraphs for various N allows for the discovery of
extended motifs. Motifs are considered to be individual, con-
nected graphs that are vastly overrepresented in the network
compared to a null model. They have more edges, for a given
number of nodes, than antimotifs and generally display a
bipartite structure or tend towards a complete graph. In con-
trast, antimotifs are mostly trees or contain at most a single,
small loop. The heuristic for graph isomorphism developed
here can be applied with minor changes to directed graphs.
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